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Abstract—The extensive past publication concerning the calculation of the behavior of laminar natural
convection plumes above energy sources contains numerous elements of uncertainty and confusion con-
cerning proper variables, boundary conditions, and governing equations. This paper, for the first time,
states the problem in simplest variables, resolves various apparent redundancies in boundary conditions,
and indicates the optimum way to formulate this boundary value problem. Results of numerical calcula-
tions are given in terms of the present simple formulation for a wide range of values of Prandtl number,
some not having been treated before. Results of experiments with plumes are included to emphasize the
various properties of plume flow and to indicate that the large thickness of the boundary region in the
range of stable laminar plumes (i.e. at relatively low local Grashof numbers) should encourage the cal-
culation of higher order approximations of the flow.

NOMENCLATURE

specific heat of the fluid at constant
pressure ;

wire diameter ;

nondimensional stream function;
gravitational acceleration;

Grashof number defined by equation
(6);

thermal conductivity of the fluid;

wire length;

vertical mass flow rate per unit length:
variable as defined by equation (7);
exponent defined by equation (7);
Prandtl number;

heat generated by the line source;

fluid temperature ;

velocity component in x direction ;
velocity component in y direction;
vertical height above the line source;
horizontal distance from the mid-plane
of the plume;

coefficient of volumetric thermal ex-
pansion ;

nondimensional temperature defined by
equation (8);

fluid density ;

4,  dynamic viscosity of the fluid ;
n,  similarity variable defined by equation
(4);

¥, stream function defined by equation (5);

v,  kinematic viscosity of the fluid.
Subscripts

£ Fujii;

0, in the mid-plane;
X, parameter based on distance x;
in the undisturbed fluid.

INTRODUCTION
THIs paper concerns a natural convection plume
arising from a horizontal line source of heat in
quiescent surroundings of infinite extent. Zeldo-
vich [1] in Russia in 1937 is the first one known
to us to have described the natural convection
plumes arising from a point and from a hori-
zontal line source of heat. The similarity methods
used by Tollmien [2], to solve for the turbulent
flow velocity for the 2-dimensional and axi-
symmetric jet, and by Schlichting [3], to solve
for the laminar flow velocities, were employed,
and buoyancy and a similarity form of tempera-
ture distribution were included. The treatment
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by Zeldovich does not permit a velocity com-
ponent normal to the plane of symmetry of the
plume. However, using the conditions that all
the terms of the x momentum equation are of
the same order of magnitude and that the heat
produced by the source crosses each horizontal
plane, expressions are given for the velocity and
temperature distributions for both the two
dimensional and the radially symmetric cases
for both laminar and turbulent flow.

In 1941 Schmidt [4] investigated the be-
havior of natural convection in a turbulent
plume above a line and point source of heat. A
similarity technique was used. The governing
flow equations were solved by assuming a series
solution in terms of the similarity variable. His
experimental work included measuring the
temperature and velocity above an electrically
heated wire.

H. Schuh, in 1948, in the report Boundary
Layers of Temperature [ 5], presented a concise
analysis of the natural convection boundary
layer flow above plane and axially symmetric
sources, giving boundary conditions, assuming
the form of the similarity variable as originally
proposed by Prandtl, and obtaining the coupled
differential equations. Schuh refers to an earlier
unpublished paper, in which he apparently
solved the two point boundary value problem
for a plume in a fluid having a Pr=07. A
numerical integration scheme was used, assum-
ing starting values for velocity and temperature
at the centerline and correcting these to satisfy
imposed conditions at infinity.

A study of natural convection from a point
source was reported by Yih [6] in 1951. The
coupled equations for axisymmetric laminar
flow were solved, analytically, in closed form,
for Prandtl numbers of 1 and 2. For the turbulent
case he arrived at the temperature and velocity
distributions by dimensional analysis coupled
with experimental results from a bunsen burner
flame. The temperature and velocity distribu-
tions were measured by a thermocouple and a
small anemometer, respectively. The applic-
ability of the results in the laminar region was at

best marginal since the source had a finite
size and was also a source of mass.

Yih [7], in 1952, presented a closed form
solution for the temperature and velocity distri-
bution for the laminar free convection flow
above a line source of heat for Prandtl numbers
2/3 and 7/3.

Measurements of velocity and temperature
distributions were performed by Rouse, Yih and
Humphreys [8], in 1952, above a line of small
gas flames, designed to simulate a line source of
heat. Morton, Taylor and Turner [9], in 1956,
published a study in which a light fluid was
released in a tank of a heavier fluid, with a
stable density gradient, to simulate a point
source. Morton et al also developed the
laminar natural convection theory for main-
tained and instantaneous sources for plumes in
a variable density surrounding medium. This
analysis has applicability to the smoke rising
from chimneys in a compressible atmosphere.

An experimental study on the weak con-
vective heat transfer from fine heated horizontal
wires was performed by Collis and Williams [ 10]
in 1954. The temperature distribution about the
wire was determined with an interferometer and
the resulting distribution was in partial agree-
ment with Langmuir’s stagnant film concept.
The study is directed mainly towards hot wire
anemometry applications where for a wire on
the order of 0-0001 in. dia. and 1 in. long they
found that l/d ratios must exceed 20000 for axial
conduction through both the wire and gas to be
negligible in the integrated effect.

The first work in unsteady natural convection
from heated horizontal wires was done in 1956.
Ostroumov [ 11] experimentally investigated the
startup phenomena of the plume, comparing the
shape and the upward velocity of the “‘dome” in
fluids of various Prandtl numbers.

Mahony [12] in 1956 published an analytic
study of natural convection heat transfer at small
Grashof numbers from spheres and cylinders to
determine the regions in which conduction or
convection are the dominant heat transfer mode.
It is shown that convection is negligible near the
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body and becomes as important as conduction
at distances from the body on the order of
(Gr)™" where n varies from } to 3, depending
upon body shape. The method used to obtain
the range of influence was to match the con-
duction solution to the convection solution by
equating the temperature and the temperature
gradient in the vertical direction at some
distance above the source.

The problem of laminar natural convection
above a linear heat source was again solved
analytically by Sevruk [13] in 1958, assuming
similarity variables and expressing the solution
for the resulting ordinary differential equations
in a power series. In 1959 Crane [ 14] derived the
boundary layer equations for a plume above a
long thin heated horizontal wire for the case of
a gas whose coefficients of viscosity and thermal
conductivity vary directly as the absolute
temperature using, in effect, the convectional
method of variable transformation. A series
solution was determined for a particular Prandtl
number of 5/9. Another particular Prandtl
number case for a line source plume was
analyzed by Spalding and Cruddace [15]in 1961
when they simplified and solved the governing
differential equations for the natural convection
plume in a medium of very high Prandt] number
(Pr = o).

Lee and Emmons [16], in 1961, theoretically
and experimentally investigated the behavior of
the turbulent natural convection above a line of
fire. Theoretically, the governing equations were
solved by quadrature for a finite width source,
employing the boundary layer assumptions and
with the assumptions of lateral entrainment of
air and similar Gaussian velocity and tempera-
ture profiles at all heights. Experimentally,
temperatures were measured with a resistance
thermometer and the effect of radiative heat
from a luminous flame were determined. The
results were in good agreement with theory.

To date, the most thorough treatment of the
natural convection plume above a horizontal
line and point heat source is the numerical
analysis of Fujii [17] in 1963, to which later
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experimental papers refer for comparison. Fujii
solved the two dimensional flow configuration,
assuming boundary layer behavior, in closed
form for a Prandtl number of 2, and for the
axisymmetric case for a Pr = 1 and 2. He also
used numerical integration to solve the differ-
ential equations for Prandtl numbers of 0-01, 0-7
and 10. Because Fujii’s work encompasses all of
the previous similarity ideas and sets of bound-
ary conditions, the present method of solution
along with boundary conditions will be com-
pared with that of Fujii.

The two most recent experimental investiga-
tions into the velocity and temperatures profiles
around a horizontal wire in air are those by
Brodowicz and Kierkus [18] in 1966 and by
Forstrom and Sparrow [19] in 1967. Brodowicz
and Kierkus used suspended dust particles in
air to measure velocities and an interferometer
to determine the temperature distribution above
a heated wire with an I/d = 3330. Their results
are only in fair agreement with the plume theory.

Forstrom and Sparrow used a thermocouple
to measure the temperature distribution in air at
various heat inputs and heights above a wire
source. A regular laminar swaying motion of the
entire plume was inferred from the regular
variation with time of the centerline temperature
(at higher heating rates, i.e. higher Grashof
numbers). Irregular thermocouple output fluctu-
ations were interpreted as the onset of turbu-
lence. The data and results were interpreted to
indicate that a virtual line source should be
placed at two wire diameters below the actual
wire in order to match the behavior of an actual
plume from a wire with the similarity solution
from a line source. The value for the temperature
similarity variable at the centerline ¢ (0) deter-
mined from measurements was about 15 per
cent below the theory results of Fujii.

The most recent work is an analytic study of
the laminar free vertical jet, with buoyancy, by
Brand and Lahey [20] in 1967. Even though a
vertical jet would have mass flow and a vertical
component of velocity at the origin, no addi-
tional parameters were introduced and the
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Table 1. 2-Dimensional and axisymmetric solutions

Author [Ref.] Configuration Pr
Schuh [5, unpublished]  2-dimensional 07
Axisymmetric 07
Yih [6] Axisymmetric 1,2
Yih [7] 2-dimensional  2/3,7/3
Sevruk [13] 2-dimensional  Variable
Crane [14] 2-dimensional  5/9
Spalding and
Cruddace {15] 2-dimensional  x
Fujii {17} 2-dimensional 2
0-01, 07,10
Axisymmetric 1,2
0-01.0-7. 10
Brand and Lahey [20] 2-dimensional  5/9,2
072,1,5,10
Axisymmetric 1,2

0-72, 5,10

Method of solutior; :

Numerical integration

Closed form
Closed form
Power series solution

Series solution

Approximate closed form

Closed form
Numerical integration
Closed form
Numerical integration

Closed form
Numerical integration
Closed form
Numerical integration

formulation of the problem, along with the
boundary conditions is, then, identical, but
without references to, Fujii’s work nor to the
extensive literature. In addition to the exact
solutions found by Fujii, Brand and Lahey also
found closed form solutions for Pr = 5/9 for the
line source. Their numerical solutions include
profiles for Prandtl numbers of 0-72, 5 and 10.

The many and varied studies concerned with
the natural convection plume above a horizontal
line source of heat prompted this paper, as an
attempt to clarify the problem and to bring
some order to the diverse formulations in
previous studies. The different set of similarity
variables used here enables a straightforward
analysis of the problem, devoid of the vagueness
of many past studies concerning the selection of
the appropriate boundary conditions. Addi-
tional numerical results are also presented.
Methods of solution and cases solved in some of
the past studies are summarized in Table 1.

THEORETICAL ANALYSIS

A. Base flow equations

The problem of natural convection flow
resulting from an infinitely long horizontal line
source of heat is considered as a two dimensional

laminar, steady state flow. The coordinates and
velocity variables are defined in Fig. 1.
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Fii. 1. Geometry.

The governing momentum, energy and con-
tinuity equationsare simplified by the Boussinesq
approximation and by boundary layer assump-
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tions to the following form, in the absence of a
stratification in the ambient temperature ¢ ..

2

ou Ju 0%u
p(ua + ”ay> = pgpAr + S (N

u—ai+vﬁ——k—<—ai> 2
Ox dy pc,\0y?

ou 6v

ax oy =0 3)

The viscous dissipation term was not retained
in equation (2). Gebhart [21] in 1962 demon-
strated that the effect of viscous dissipation in
natural convection becomes important only
when gfx/c, = O(1), ie. when the induced
kinetic energy becomes appreciable compared
to the amount of heat transferred. The quantity
gB/c, remains in the range 10~ 710~ for fluids
as different as liquid sodium, mercury, gases at
ordinary temperature, water and viscous sili-
cones, for the terrestrial level of gravity.

Previous equations are reduced to two ordi-
nary differential equations for certain boundary
conditions by introducing a similarity variable
#(x, y) and a stream function y¥(x, y):

1=2 % @
v = 4v\/ (G’ ")f() ©)

3 _
gﬂx (IVO2 tw). (6)

where

Gr,x =

The plume centerline temperature variation
with x is initially assumed to be of the power
law form Nx" so that

to — to, = NX" 0

It will be shown that this form of the centerline
temperature distribution is the appropriate one
for certain flow configurations because n may be
chosen so that necessary conditions on the heat

flow convected thermal energy, across hori-
zontal planes, are satisfied.

The nondimensional temperature excess ratio
¢(n) is defined as

o) =

—1le
—

)

so that the local temperature excess is

tw, = NX"(n). ©

This procedure is in contrast with all earlier
work on plumes, in which an undetermined
constant arises in the definition of ¢. The
continuity equation (3) is satisfied by y and
equations (1) and (2) are transformed by (4),
(5) and (9) into

f"—=2n+2f?*+@+nf"+¢=0 (10)
¢" + Pr[(n + 3)f¢' — 4nf'¢] = 0. (11)

Up to this point the analysis has been general.
The equations apply for boundary layer flow
over a vertical plate, for plane sources, and for
plumes arising from a horizontal line source.
The proper boundary conditions specify the
particular case. The boundary conditions along
with the values of N and n in equation (7) are
determined for a plume by satisfying the neces-
sary conditions on a plume flow resulting from
a line source. The energy convected across any
horizontal plane (at x) in the plume is

Q =pcp_i£t —

t —

toyudy. 12)

In terms of the similarity variables Q becomes

N\ i
0 =toe, N () e [t gt a
o (13)
Since Q is not a function of x (the only heat

addition is due to the line source, there being
no other sources) the value of n is found.

n= —3/5* (14)

* For a constant flux plate Q must be proportioned to x,
80 n = 1/5, the same value of n applies for a uniform plane
source in the mid-plane of a plume. For an isothermal plate,
nis equal to 0,
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With this value for n, equations (10) and (11)
become

12 4
f”’+~5~ﬁ"~§f'2+¢=0 {15)

b+ 2Py = 0 (16)

These equations for the plume are similar to
those obtained by Schuh [5], Fujii [17] and
others. A difference arises in the coefficients,
because of a different choice of variables.

B. Boundary conditions

Establishing boundary conditions for the
plume flow equations (15, 16), now that the
value of n is determined, is the last step in
completely specifying the problem. The govern-
ing equations require five independent boundary
conditions. The boundary conditions for the
line source plume can be generated from physical
considerations as follows: The symmetry of
the plume with respect to its mid-plane requires
that (0t/0y)y = 0, vy = 0, (Ou/dy)e =0, t = 1.
The symmetry is seen in Fig. 5. each fringe is an
isotherm. The above conditions, written in
terms of the similarity variables are:

¢'0) =f"0)=f0)=0 (17)

and
P0) = 1. (18)

Energy considerations require that all effects
vanish at large values of #, ie. u— 0 and
t = t,. In terms of the dependent functions in
this circumstance, we have

J(o0) =0, ¢lo0) ~0. (19)

The problem is apparently over-determined,
there are too many boundary conditions. How-
ever as will be shown, not all of these conditions
are independent.

The energy equation (16) is a perfect differen-
tial and may be integrated once to give

¢ + 24Prfp = C,. (20

The constant C, is evaluated from the boundary
conditions (17), ¢'(0) and £(0), as zero, and

¢ apy
— = — 24Prf. 20
¢
Integrating again can get
i) = p(0)ye 47l (22)

where ¢(0) = 1 from equation (18). Since f is

positive and becomes constant for large 7,

the value of the integral is unbounded and
lim ¢(n) = 0.

70

(23)

Therefore, the condition ¢{o0) — 0 is not in-
dependent, but is implied by conditions used to
evaluate constants of integration. As a result we

are free to choose the most convenient set of

independent boundary conditions.

The conditions ¢'(0} = 0 and f(0) = 0 may
not be used again since they have already been
used to obtain (21). The remaining four inde-
pendent boundary conditions, two at zero and
two at infinity, are sufficient to solve the fourth
order system of differential equations given by
(15) and (21). However, this would be unwise,
in the subsequent numerical solution since
two missing conditions must then be guessed at
zero in order to start the integration. The prob-
lem could also be solved from the integro-
differential equation resulting from {15} and (22),
with boundary conditions

fO) =0,"0)=0 and f’(co)— 0.

Still, two boundary conditions must be satisfied
atinfinity,and inaddition, the integro-differential
equation causes difficulties in boundary value
problem solution.

However, if one eliminates condition (23),
there remain the necessary five conditions for
(15) and (16). The problem remains a boundary
value problem, but with only one condition to
be met at infinity. This procedure represents
an appreciable simplification and improvement
in method over all previous treatments.
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The above results are valid only for the plume
arising from a line source and applicable to
natural convection flow over a vertical adiabatic
surface with a heat source concentrated at the
leading edge, since only for n = —3is the energy
equation an exact differential. ’

The present boundary conditions and method
of solution will be compared with those of
previous studies. Since Fujii’s [17] work is the
most complete and representative of past work,
his boundary conditions will be presented
and differences from them mentioned. The set of
boundary conditions used by Fujii are:

JA0) =fH0) = ¢3(0) =
Sf{o0) = ¢p{c0) = (25)

The condition ¢(co0) = 0 cannot substitute a
condition for the temperature difference along
the plume mid-plane. Therefore, Fujii had to
introduce the arbitrary normalization :

T rioan=1

24

(26)

[on ¢, in effect, since ¢(0) is not given], to define
the problem. This was an additional condition
imposed on the differential equations during the
numerical integrations. Fujii stated that the
theoretical or numerical calculations cannot be
performed without this condition. One would
infer that most earlier workers were of the same
mind.

Schuh [S], Sevruk [13] and Brand and Lahey
[20] use the same five boundary conditions as
Fujii. Spalding and Cruddace [15], in solving
the flow equations for temperature dependent
viscosity, arrive at a set of differential equations
similar to Fujii’s. They neglected the condition
that the normal velocity component is zero
at the plume mid-plane but included condition
(26), to define the problem.

Equation (26) is the condition of invariant
thermal flux in the plume, note equation (13).
Similarly, by equating the total momentum in
the plume with the total work done by buoyancy,
the following relation results.
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o w0

ffrdn—F | ¢dn=0 (27
-® —w
Equations (26) and (27) are consequences of the
conservation equations and of the boundary
conditions peculiar to the plume problem. The
latter differentiate the plume flow configuration
from that over a heated vertical flat plate, for
example.

Since the method of solution presented in
this paper does not employ any integral relations,
e.g. equation (26) or (27), to perform integration
of the governing equations, and since only one
condition is lacking aty = O(to start the numeri-
cal integration), the method of solution is clear,
very simple, and efficient.

C. Evaluation of temperature, flow rate and

velocity distribution
By defining
I= | fédn (28)
equation (13) can be written as
- 0* ¥
_ (435;5,92#2(;;14 . 9)

Therefore, equation (7) is completely defined as
afunction of fluid properties and heat generation
rate at the wire and by an integral of the functions
J' and ¢. The local temperature excess is given
by (@) as:

+
NP e[Q] < o) (0

and the mass flow rate in the plume is

2
= 4%J I:gﬁ" HOx ] (31)
c,I
where J is the value of the integral
J= [ fmydn. (32

Hence we conclude that the maximum tempera-
ture in the plume decreases (at constant 1) as a
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minus three-fifths power of the height and that
the mass flow rate increases at the same rate.
The temperature level increases with four-fifths
power of the total heat input and the mass flow
increases only to the one-fifth. Viscosity. heat
capacity, and density of the fluid have also
strong influence on temperature distribution
and mass flow rate. The vertical velocity
component in the plume is

_ g JeBQU [,
o) Gl

The horizontal component is

(33)

3 2
v=426r, X{gf(n) - gnf'(m}. (34)

RESULTS AND CONCLUSIONS
Extensive numerical calculations were carried
out, in a Prandtl number range from 0-01 to 100,
using the more direct formulation and procedure
set forth above. The stream function is plotted
in Fig. 2. The temperature distribution and
vertical velocity component distributions are
30
28
2:6
2-4
2-2
2:0
1-8
16
I-4
-2
-0
0-8
06
0-4
0-2

FiG. 2. Computed value of ffor a range of Prandtl numbers.

08 T l\ T T T T Y T
O? — . ]
06 F

05 r

, 04

03

FiG. 3. Computed velocity profiles for a range of Prandtl
numbers.

plotted in Figs. 3 and 4. For plumes, as for
convection flows developed over heated vertical
plates, the thermal and velocity layers remain
coupled in thickness for Prandtl numbers
decreasing from 1 to values typical of liquid
metals, in contrast to the analogous forced flow
case. For increasing Prandtl number, above 1,
the thermal layer becomes relatively much
thinner than the velocity layer. The decreasing
velocity levels in the plume, with increasing
Prandtl number, are clearly seen in Fig. 3.
Plume symmetry is apparent from the zero
slopesatn = Oin Figs. 3 and 4. Numerical values
of f'(0) and of I and J are given in Table 2.
Indications of the thicknesses of the temperature
and velocity boundary regions are also given
in the table by values of n at ¢(n) = 0-01 and at
Ufumay = 001 = f(n)/f"(0).

Temperature and velocity distributions were
compared and were in good agreement with
those presented by Fujii [17]. The maximum



FiG. 5. Interferogram of a plume formed above a heated wire in air.
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Fic. 4. Computed temperature distribution for a range of
Prandt] numbers.

discrepancy in the values of ¢ and f at the mid-
plane was about 0-1 per cent.

Figure 5 is an interferogram of a plume in air,
at 78°F and 1 atm, formed above a 0-005 in. dia
heated wire of 6 in. length at a heating rate of
54 Btu/h ft. The instrument is a 5 in. Mach-
Zehnder interferometer with a Mercury vapor
source filtered to the green line. The adjustment
was to the infinite fringe, each fringe represents
an isothermal contour. The constant for these
conditions is 7°9°F per fringe. The lens system is
conventional, i.e. not anamorphic, the distance
scales are thesame in both the x-and y-directions.
The lines are a wire grid with vertical and
horizontal spacing of 4 and } in., respectively.

The interferogram indicates clearly the extent
of the thermal boundary region of the plume
above the source. Since for a Prandtl number of
0-7 the velocity and thermal boundary regions
are of aimost equal extent, the disturbed region
seen is essentially the whole plume.

For this plume the calculated local Grashof
number at x = 2 in. is 1-7 x 10%. The plume
half thickness 4, at x, divided by x is about 0-19.
The nominal limit of the applicability of
boundary layer theory is usually expressed as
(6/x) < 1. Now, since laminar plumes are
thought, at least by the present writers, to be
unstable at even lower local Grashof numbers
than laminar flows over surfaces, it is apparent

Table 2. Numerical values of computed parameters

pr 001 01 07 10 20 67 100 1000
110 09751 08408 06618 06265 05590 04480 04139 02505
¢=00latn= — 110 39 32 22 12 10 04
0 =00latn = 146 93 41 38 37 41 43 56

I — 3090 1:245 1053 0756 0407 0328 —
J — 4316 1-896 1685 1393 1-094 1-024 —
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that higher order approximations should be
made in calculating laminar plume flows. We do
not at this time know, from experimental
observations, the systematic deviations of actual
plume flows from the predictions of simplest
laminar boundary layer theory. These questions
are under study and the first of our experi-
mental investigations will appear in [22].
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PANACHES PERMANENTS ET LAMINAIRES DE CONVECTION NATURELLE
AU-DESSUS D'UNE SOURCE DE CHALEUR LINEAIRE HORIZONTALE

Résumé—Les publications antérieures en nombre considérable concernant le calcul du comportement
des panaches de convection naturelle laminaire au-dessus de sources d’énergie, contiennent de nombreux
é&léments d’incertitude et de confusion sur les variables convenables, les conditions aux limites et les équa-
tions qui régissent les phénoménes. Cet article, pour la premiére fois, pose le probléme avec les variables
les plus simples, résout les nombreuses redondances dans les conditions aux limites, et indique la fagon
optimale de formuler ce probléme de valeurs aux limites. Les résultats des calculs numériques sont donnés
sous la forme de la formulation simple actuelle pour une gamme étendue de valeurs du nombre de Prandtl,
certaines n’ayant pas été traitées auparavant. Des résultats d’expériences avec des panaches sont inclus
pour mettre en relief les diverses propriétés de ’écoulement du panache et pour indiquer que la grande
épaisseur de la région frontiére dans la gamme des panaches laminaires stables (C’est-a-dire, & des nombres
de Grashof locaux relativement bas) encouragerait des calculs de P'écoulement A des approximations
d’ordre plus élevé.



STEADY LAMINAR NATURAL CONVECTION PLUMES

STATIONARE, LAMINARE, FREIE KONVEKTION-GEBILDE UBER EINER
WAAGERECHTEN LININFORMIGEN WARMEQUELLE

Zusammenfassung—Die zahlreichen Veréffentlichungen iiber die Berechnung der laminaren Zellstrdmung,
die sich durch freie Konvektion iiber Energiequellen ausbildet, enthalten viele Unsicherheiten und Un-
klarheiten iiber geeignete Variable, Randbedingungen und geltende Gleichungen. In dieser Arbeit wird
das Problem zum ersten Mal mit Hilfe einfacher Variabler formuliert; verschiedene iiberfliissige Rand-
bedingungen werden beseitigt und der beste Weg fiir die Behandlung dieses Randwertproblems wird
gezeigt. Ergebnisse numerischer Rechnungen werden als Ausdriicke einfacher Formulierungen fiir einen
grossen Bereich von Prandtlzahlen, von denen einige frither nicht behandelt wurden, angegeben. Ergeb-
nisse von Experimenten mit solchen Stromungszellen werden ebenfalls angegeben, um ihre unterschied-
lichen Eigenschaften hervorzuheben und um 2u zeigen, dass die grosse Dicke der Randbezirke im Bereich
der stabilen laminaren Konvektionsformen (z.B. bei relativ kleinen lokalen Grashofzahlen) zu einer
Berechnung der Stromung mit Ndherungen hoherer Ordnung ermutigen sollte.

CTAIIMOHAPHAA JAMMHAPHAA CBOBOJHAA HOHBEKIMA HAJ
T'OPU30HTAJIBHBIM JIUHENHBLIM UCTOYHHWKOM TEILJIA

AnHoTanna—B uMelIMXCA MHOTOYMCIEHHHX IyGIMKAHUAX IO PAcueTy IaMMOAPHHX
CTPYEK €CTeCTBEHHOW KOHBEKUMM HAaJ MCTOYHMKAMH SHEPIHM COMEPHUTCA MHOTO HEACHOro
U NPOTMBOPEYNBOTO B OTHOIUEHMH COOTBETCTBYIOIIMX NepeMEeHHHX, MPAHMYHHX YCIOBHN K
OCHOBHHX ypaBHeHuit. B maHHOW CTaThe BIepBHe CTABUTCA 3ajaya B HaumGoiee MPOCTHIX
nepeMeHHHX, PaspellaloTCs PasIMyHbe M3GHTOYHOCTH TPAHWYHEIX YCIHOBMIL M yKasHBAETCHA
Ha ONTUMAJBLHHEIH cnocod GopMyIUpPOBKM 5TOl IpaHWYHOM 3amayl. Pe3ysbTarsl YHUCIEHHBIX
PacueToB BRHIPAMAITCA 4Yepe3 NaHHYIO POPMYIMPOBKY AJMA HIMPOKOTO AMANA30HA 3HAYCHMMH
kpurepua I[IpaHmTig, HeKOTOpHE M3 KOTODHX paHee He pacCMATpUBAIKCH. Pesyabrarn
3KCIIEPUMEHTOB CO CTPYMKaMH BKIIOUEHH C el b0 IOTYePKEYTH Pa3nUYHEe CBOHCTBA CTpYeK
W yKa3aTh, yTO GOAbIIAA TOJNIMHA MOTPAHAYHON 0GIacTH B AnMana3oHe CTAOMITBHHIX JAMU-
HAPHHIX CTPyeK (T.e. IPU OTHOCHTEJIbHO HM3KUX JIOKAMBLHEIX 3HAYeHUAX KpuTepudA ['pacroda)
KOMACHA CTOCOOCTBOBATL MPOBEJEHHIO pPACYeTOB IIOTOKA C NOMOIIBI ANNPOKCHMAuW
BHICIIIEr0 MOPARKA.
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